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ABSTRACT

We consider a new scheduling problem originating from order picking at an automatic
warehouse. We have a finite set of orders. Each order consists of a set of items. All
orders should process through the picking stage, where items are extracted from pallets
and packed in boxes for customers. We have some identical parallel picking machines and
some parking slots for pallets. Each machine can use the pallets from all parking slots.
Each pallet should be brought from the automatic warehouse to the parking slot and re-
turned by a transport robot. The fleet of robots is limited. Our goal is to process all orders
with minimal makespan. To tackle the problem, we design a mathematical model and three
local search heuristics based on the order permutations. A fast decoder procedure creates
an active schedule for parallel machines under the robot fleet constraint. Computational ex-
periments for semi-synthetic test instances with up to 345 orders, 30 robots, and 16 parallel
machines indicate the high efficiency of the approach.
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1 Introduction

Complicated warehouses take a significant part in the production process of different compa-
nies like online marketplaces, electronic manufacturers, etc. The general structure of such
warehouses is common: a huge area, devoted to the storage of hundreds to thousands of
items, and a department, which should be able to extract certain items from this storage and
send them to customers quickly. The internal structure of such a warehouse consists of several
areas, each of which serves its own purpose. The storage area presents a set of racks with
shelves where raw materials are located. In automated warehouses, all the loading and un-
loading procedures in the storage area are performed by Automatic Guided Vehicles (AGVs).
The picking process for customer’s orders can take more than half of the overall operating cost



(Tompkins, White, Bozer and Tanchoco, 2010). It is essential to use resources efficiently in this
stage.
Order serving depends on the internal structure of the warehouse and the requirements of
the business and customers. Warehouse operations can be divided into four main stages:
receiving goods, storing them in a storage area, picking from the storage area, and shipping to
clients.
The first and last stages of this process are least covered in the literature. Trucks with goods ar-
rive at the warehouse and need to be assigned to gates to be unloaded. Similarly, other trucks
need to be loaded to send goods to customers. There are also cross-docking warehouses,
where received goods are sent directly to the shipping docks. The most common problem that
comes from these stages is the truck assignment. For example Tsui and Chang 1992, and
Gue 1999 study the carrier-to-dock assignment and Oh, Hwang, Cha and Lee 2006 consider
the order-truck assignment.
The primary function of most warehouses is keeping goods before shipping to clients. Thus,
the problem of organizing the storage comes in the literature often. The items should be stored
in a way to minimize collecting time before shipping. Each type of item can be assigned to
a position separately (Malmborg, 1996), or the warehouse can be divided into multiple zones
(Jane and Laih, 2005).
There are various ways to organize order picking. Order can be processed by workers or
automated robots (Ouzidan, Sevaux, Olteanu, Pardo and Duarte, 2020). The collectors can
move around the warehouse, collecting necessary items from the shelves (picker-to-parts)
(Eisenstein, 2008), (Henn, Doerner, Strauss and Wäscher, 2003), or the necessary items can
be delivered separately to the special picking station (parts-to-picker) (Ouzidan, Pardo, Sevaux,
Olteanu and Duarte, 2021; Sarker and Babu, 1995). Each picker can serve only one order at a
time (Eisenstein, 2008), or several orders can be picked simultaneously (Henn and Wäscher,
2012). Many researchers focus on batching problems. We need to group orders into batches
so that orders in the same batch will be picked together (Van Den Berg, Van Der Hoff et al.,
2001; Chen and Wu, 2005).
Transportation of items is mostly considered separately in routing and sequencing problems. In
these problems, we need to determine the sequence of orders to minimize processing time or
traveling distance, see for example (Van Den Berg and (noud) Gademann, 1999; Roodbergen
and De Koster, 2001; Lee and Schaefer, 1997).
The sorting problem appears when multiple orders are picked together. Usually, order pickers
place items on a circulation conveyor, and then items enter the assigned shipping lane if all
items of the preceding are ready for shipping (Johnson, 1997; Meller, 1997). Some additional
problems such as robot movement control (Burohman, Joelianto and Widyotriatmo, 2020) or
manipulator control (Aparanji, Wali and Aparna, 2020) can also be applied to warehousing. A
detailed literature review for various ways of organizing a warehouse can be found in (de Koster,
Le-Duc and Roodbergen, 2007; Roodbergen and Vis, 2009; Gu, Goetschalckx and McGinnis,
2007; Davarzani and Norrman, 2015).
Although there are various papers about warehouse operations, most of them consider prob-
lems applied to a specific warehouse structure.



There are some other similar problems which are a generalization of the problem on parallel
machines, for example, a multi-stage problem with limited buffer (Wardono and Fathi, 2004)
and a problem with sequence-dependent set-up times (Kurz and Askin, 2001).
In this paper, we study a new scheduling problem for identical parallel picking machines with
a limited number of parking slots for the AGVs. We know the set of orders (jobs) that have to
be processed through the system. Each order consists of a set of items. Each item can be
required for multiple orders. All items (raw materials) are in a storage area of the warehouse
on pallets. Each pallet has a lot of identical items. They may be moved to the picking area
and returned back. The transportation process is carried out by the AGVs. Each AGV can
carry only one pallet at a time. We assume that the travel time from the storage to the picking
area and back is the same for all pallets. The fleet of AGVs is limited. In this study, we do
not consider the routing problem for AGVs. Thus, AGVs are managed as a resource. We
assume that each AGV is unavailable when it performs a trip. As soon as the trip is completed,
it returns to the fleet and can be used again immediately, no matter where it was located at
the end of the previous trip. A similar rule is used in (Davydov, Kochetov, Tolstykh, Xialiang
and Jiawen, 2021) where a two-stage flowshop scheduling problem with intermedia buffer is
studied. But in contrast, we assume that pallets can stay at the parking slots without robots. In
our problem, robots have more freedom for trips.
The order process is possible if and only if all required pallets are in the parking slots. The
picking process is carried out by identical picking machines that work in parallel. They have
access to all pallets in the parking slots. Each machine can process only one order at a time.
We know the processing time for each order. Our goal is to find a schedule for this system with
minimal total length. In other words, we deal with a makespan minimization problem.
To tackle the problem, we design a mixed integer nonlinear mathematical model and find a way
to linearize it by introducing additional variables and constraints. Our preliminary computational
experiments have shown that commercial solver Gurobi can find optimal solutions for small
instances only. Thus, we develop three local search heuristics based on ideas of the parallel
Tabu Search (TS) and Simulated Annealing (SA) (Gendreau and Potvin, 2019). We present
feasible solutions as the permutations of the orders and apply a polynomial time decoding
procedure to get feasible schedules for the parallel machines under the AGVs fleet constraint.
The decoding procedure returns free pallets to the storage but tries to save some of them if
we can use them again soon. The well-known swap and move neighborhoods are used for
the local search. Randomized neighborhoods are applied in the Parallel Tabu Search heuristic
to reduce the running time for the large-scale instances. To get the initial solution, we design
a greedy algorithm based on an idea of minimal distance between the nearest orders. We
construct the initial permutation step by step, taking into account the distance to the next order.
We prefer the permutations where each two nearest orders need near the same pallets. We
use each order as the first one in the permutation and select the best result for the initial
solution.
Computational experiments were conducted on the semi-synthetic test instances obtained from
a large electronic device manufacturer with up to 345 orders, 121 types of items, 30 transport
robots, and 16 identical parallel machines. Each order requires at most 8 pallets. We note



that the most difficult instances have a small number of parking slots. Thus, we generate the
benchmarks where the number of parking slots is equal to the maximal number of required
pallets among all orders or exceeds it at most by 4. The proposed approach is compared to
the four lower bounds with and without the robot fleet and parking slots constraints.
The main contribution of our work is the following:

• We introduce a new scheduling problem for an automated warehouse with identical parallel
machines, limited parking slots, and transport robots.

• We present a mixed-integer linear program for this scheduling problem.

• We provide a polynomial time decoding algorithm for order permutations.

• We develop three local search heuristics to find near optimal solutions.

• We conduct computational experiments on the semi-synthetic test instances obtained from
a large electronic device manufacturer to show the efficiency of the proposed approach.

The rest of the paper is organized as follows. In Section 2, we present a detailed mathematical
formulation of the problem and show a way to linearize it. In Section 3, we design the decoding
procedure and propose a general framework of the approach to tackle the problem. In Section
4, we discuss the results of the computational experiments. Section 5 concludes the paper.

2 Mathematical model

Let us introduce the following notations to present the mathematical model formulation: n is the
number of orders, m is the number of parallel identical picking machines, C is the number of
transport robots, L is the number of types of items, P is the number of parking slots. For order
i, we denote by Li the set of required items and by pi its processing time. We assume that
the traveling time from the storage to the parking slots and the traveling time from the parking
slots to the storage is the constant W . Moreover, we need two additional constants: an upper
bound for the length of the schedule M =

∑n
i=1 pi and an upper bound for the number of robot

trips T =
∑n

i=1 |Li|.

2.1 A mixed-integer non-linear model

The model is formulated as the well-known problem for the identical parallel machine schedul-
ing with additional constraints for transport robots and parking slots for the pallets. For the
classical parallel machine scheduling, we introduce the following variables:
si ≥ 0 is the starting time of order i,

xij =


1, if orders i and j are performed on the same machine

and the order i immediately precedes order j

0, otherwise

fi =

1, if order i is the first on its machine

0, otherwise
.



To control the robot movements and available parking slots, we introduce positive variables τk

which indicate the time moment of the k-th change event on the parking slots. Without loss of
generality, we can control the size of the robot fleet and the number of occupied parking slots
in these event points only. Let us introduce the auxiliary variables:

dkl =

1, if an item l is delivering at the event point k

0, otherwise

rkl =

1, if an item l is removing at the event point k

0, otherwise

bki =

1, if order i starts after event point k

0, otherwise

eki =

1, if order i finishs before event point k

0, otherwise

αk0k =

1, if τk +W > τk0

0, otherwise

βk0k =

1, if τk + 2W > τk0

0, otherwise
.

Now we can present our problem as mixed-integer nonlinear program as follows:

min max
i=1,...,n

(si + pi) (2.1)

si ≥ sj + pj −M (1− xji) , ∀i, j = 1, . . . , n, (2.2)
n∑

i=1

xij ≥ 1− fj , ∀j = 1, . . . , n, (2.3)

n∑
j=1

xij ≤ 1, ∀i = 1, . . . , n, (2.4)

n∑
i=1

fi ≤ m, (2.5)

τk+1 ≥ τk + 1, ∀k = 1, . . . , T − 1, (2.6)

si ≥ τk −M (1− bki) , ∀k = 1, . . . , T ; i = 1, . . . , n, (2.7)

si + pi ≤ τk +Meki, ∀k = 1, . . . , T ; i = 1, . . . , n, (2.8)
T∑

k=1

bkidkl −
T∑

k=1

ekirkl ≥ 1, ∀i = 1, . . . , n; l ∈ Li, (2.9)

k0∑
k=1

(dkl − rkl) ≥ 0, ∀k0 = 1, . . . T ; l = 1, . . . , L, (2.10)

k0∑
k=1

L∑
l=1

(dkl − rkl) ≤ P, ∀k0 = 1, . . . T, (2.11)

τk +W ≤ τk0 +Mαk0k, ∀k0 = 2, . . . , T ; k = 1, . . . k0 − 1, (2.12)

τk +W ≥ τk0 + 1−M (1− αk0k) , ∀k0 = 2, . . . , T ; k = 1, . . . k0 − 1, (2.13)



τk + 2W ≤ τk0 +Mβk0k, ∀k0 = 2, . . . , T ; k = 1, . . . k0 − 1, (2.14)
L∑
l=1

dk0l +

k0−1∑
k=1

L∑
l=1

dklαk0k +

k0−1∑
k=1

L∑
l=1

rkl(1− αk0k
)βk0k ≤ C, ∀k0 = 1, . . . , T, (2.15)

T∑
k=k0+1

L∑
l=1

dklαkk0 +
L∑
l=1

rk0l +

k0−1∑
k=1

L∑
l=1

rklαk0k ≤ C, ∀k0 = 1, . . . , T. (2.16)

Objective function (2.1) defines the length of the schedule which we want to minimize. Con-
straints (2.2) determine the starting times of orders on each machine. Constraints (2.3) state
that every order except the first one on each machine must follow another order. Similarly, the
constraint (2.4) says that each order can be followed by at most one other order. The inequality
(2.5) shows the number of available machines to perform the orders. Constraints (2.6) specify
the order of event points. Constraints (2.7) and (2.8) define the relationships between order
starting times and event points. Moreover, we can compute the 0-1 variables bki and eki by
these inequalities. Constraints (2.9) say that for each order, all its items must be in parking
slots during the order processing. We compute how many times robots bring the correspond-
ing pallets and return them. For each item, constraints (2.10) guarantee that the number of its
pallets in the parking slots is non-negative at each event point. Constraints (2.11) show the
upper bound of parking slots available in each event point. The inequalities (2.12)-(2.14) de-
fine the auxiliary 0-1 variables αk0k and βk0k. Inequalities (2.15) and (2.16) control the number
of robots which moving at each event point. In inequalities (2.15), we calculate the number
of robots coming to the parking slots at the event point τk0 , number of robots coming to the
parking slots in time interval (τk0 −W, τk0), and number of robots starting to the storage in time
interval (τk0 − 2W, τk0 −W ) and require at most C robot trips. In other words, we calculate
the number of robot trips immediately after the event point τk0 −W . In inequalities (2.16), we
calculate the number of robots starting to the parking slots in time interval (τk0−W , τk0), num-
ber of robots starting to the storage at the event point τk0 , and number of robots starting to the
storage in time interval (τk0−W, τk0). Thus, we calculate the number of robot trips immediately
after the event point τk0 and again require at most C robot trips.

2.2 Linearization

To linearize the model, we introduce new additional variables:

ξkil = bkidkl, ηkil = ekirkl,

χ1
k0k = αk0k

L∑
l=1

dkl, χ2
k0k = βk0k(1− αk0k)

L∑
l=1

rkl,

ζk0k = αk0k

L∑
l=1

rkl, θk0k = αkk0

L∑
l=1

dkl.



We include new constraints to ensure that the values of these variables are correct.

ξkil ≤ bki, ∀k = 1, ..., T ; i = 1, ..., n; l ∈ Li, (2.17)

ξkil ≤ dkl, ∀k = 1, ..., T ; i = 1, ..., n; l ∈ Li, (2.18)

ηkil ≥ eki + rkl − 1, ∀k = 1, ..., T ; i = 1, ..., n; l ∈ Li, (2.19)

χ1
k0k ≥

L∑
l=1

dkl − L (1− αk0k) , ∀k = 1, ..., T ; k0 = 1, ..., k − 1, (2.20)

χ2
k0k ≥

L∑
l=1

rkl − Lαk0k − L (1− βk0k) ,∀k = 1, ..., T ; k0 = 1, ..., k − 1, (2.21)

ζk0k ≥
L∑
l=1

rkl − L (1− αk0k) , ∀k = 1, ..., T ; k0 = 1, ..., k − 1, (2.22)

θk0k ≥
L∑
l=1

dk0l − L (1− αk0k) , ∀k = 1, ..., T ; k0 = 1, ..., k − 1. (2.23)

Taking into account new variables, we rewrite some constraints as follows:

T∑
k=1

ξkil −
T∑

k=1

ηkil ≥ 1, ∀i = 1, . . . , n; l ∈ Li, (2.9’)

L∑
l=1

dk0l +

k0−1∑
k=1

χ1
k0k +

k0−1∑
k=1

χ2
k0k ≤ c, ∀k0 = 1, . . . , T, (2.15’)

T∑
k=k0+1

θk0k +

L∑
l=1

rk0l +

k0−1∑
k=1

ζk0k ≤ c, ∀k0 = 1, . . . , T. (2.16’)

We will use the linearized model to obtain exact solutions and lower bounds by commercial
software (Gurobi).

3 Metaheuristics

In this section, we present three metaheuristics: tabu search, simulated annealing, and their
hybrid algorithm based on the orders permutations. We design a polynomial time decoding
procedure to determine the starting time for each order under the fleet robot constraint. We
create an active schedule and assign the current order to the first available machine when all
necessary items for it are in the parking slots.

3.1 Decoding procedure

To schedule a current order from a permutation π = (π(1), π(2), . . . , π(n)), we need to define
which pallets with items (or items for short) must be delivered, assign the trips for robots, and
return some useless items to the storage if there are no free parking slots for new items. If
we can return more items than necessary, we have to decide which items to return first. In
the decoding procedure, we return free items but try to save some of them if we can use
them again soon. To present the procedure, we introduce the following auxiliary structures and
parameters:



• Cu is the current finish time for machine u. Initially, all elements are zeros;

• Tl is the current maximum finish time of orders with item l. Initially, all elements are zeros;

• q is the queue of robot release events. It contains pairs of release time and number of
robots. We use the following operations for it:

– q.push(t, c) to add pair of releasing c robots at time t to the queue;

– q.pop() to get the first pair in the queue and remove it;

– q.first() to get the first pair in the queue;

• B is the current set of items at the parking slots;

• r is the current number of available robots;

• t is the current time.

The pseudo-code for the decoding procedure is presented as Algorithm 1. To process the
current order j from the given permutation, we need to deliver all items from the set Lj \ B to
the parking slots. If we do not have free robots for it (line 5), we have to wait until some robots
are released. If there are free parking slots, we decide how many items we can deliver (line
10) and plan the event of releasing these robots (line 11). If all parking slots are occupied (line
12), we need to remove some items. We create a set Ra of items that we can return to storage
(line 13). We include in this set all items which will be free at the arrival time of new robots
t+W . If we do not have such items, we calculate a time when the first item (one or several) will
be free, the time Tmin (line 13). If the set Ra includes some items, we try to save some of them
if we can use them again soon. To this end, we sort the set Ra by decreasing of distances.
For each item in this set, we find the position of the next order with the same item in the given
permutation π and calculate the difference with the current position i. In other words, we place
items that are needed for the nearest orders at the end and items for later orders or are already
useless at the beginning. We update the number of available robots (lines 16-19) and define
the maximal number of items for delivering (line 21), update the queue and remove c useless
items from the parking slots (lines 22-24). We repeat the calculations until all items from the
set Lj will be at the parking slots. In such a case, we assign the first available machine for the
current order j (line 30) and define the completion time for it (line 32). Finally, we update the
maximal finish time for each item from the current order (lines 33-35). The makespan of the
schedule constructed is the result of the decoding procedure. It is easy to see that the time
complexity of the procedure is O(n2P 2 + nm).
Below we consider a small instance with n = 9, m = 3, P = 3, C = 2 and p1 = 10, p2 = 8, p3 =

2, p4 = 5, p5 = 6, p6 = 6, p7 = 4, p8 = 2, p9 = 1. L1 = {1} , L2 = {2} , L3 = {2} , L4 = {3} , L5 =

{4} , L6 = {5} , L7 = {6} , L8 = {6, 7} , L9 = {6, 7, 8} and show the schedule for permutation
π = {1, 2, . . . , 9} in Figure 1. The upper plot of this Gantt chart shows the schedule of orders
on machines, the middle one shows the states of the parking slots, and the lower one shows
the robot trips. As we can see, the makespan is 18 for this feasible solution.
The optimal solution for this problem with makespan equals 17 is shown in Figure 2.



Data: order permutation π

1 Cu ← 0, for u = 1, . . . ,m; Tl ← 0, for l = 1, . . . , L; q ← ∅; B ← ∅; r ← C; t← 0;
2 for i← 1 to n do
3 j = π(i);
4 while Lj \B ̸= ∅ do
5 if r = 0 then
6 (t, rnew)← q.pop();
7 r ← r + rnew;

8 end
9 if |B| < P then

10 c← min (r, P − |B| , |Lj \B|);
11 q.push(t+W, c);

12 else
13 Ra ← {l ∈ B | Tl = minv∈B Iv ∨ Tl ≤ t+W};
14 Tmin = min {Tl, l ∈ Ra};
15 to sort the set Ra by the distance to next order in π for each item ;
16 while q ̸= ∅ ∧ q.first().time ≤ Tmin −W do
17 (t, rnew)← q.pop();
18 r ← r + rnew;

19 end
20 t← max (t, Tmin −W );
21 c← min (r, |Ra| , |Lj \B|);
22 R← subset of the set Ra containing the first c items;
23 B ← B \R;
24 q.push(t+ 2W, c);

25 end
26 D ← subset of the set Lj \B containing c items;
27 r ← r − c;
28 B ← B ∪D;

29 end
30 u(j)← argmin(Cu);
31 sj ← max

(
Cu(j), t+W

)
;

32 Cu(j) ← sj + pj ;
33 for l ∈ Lj do
34 Tl ← max (Tl, sj + pj);

35 end

36 end
37 return Cmax(π) = maxuCu;

Algorithm 1: Decoding procedure
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Figure 1: Schedule built by decoding procedure
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Figure 2: Optimal schedule



Note that this optimal solution cannot be found by order permutations. We need the item
permutations to this end. Nevertheless, we apply the order permutations to reduce the search
space and try to find the best solution in this area. We guess that the item permutations is
extremely large space for local search heuristics.

3.2 Tabu search

Trajectory local search methods and, in particular, Tabu Search (TS) show high performance
for solving NP-hard combinatorial optimization problems (Talbi, 2009). They are successfully
applied to the facility location problems (Mladenović, Brimberg, Hansen and Moreno-Pérez,
2007), vehicle routing (Erzin, Mladenovic and Plotnikov, 2017; Erzin and Plotnikov, 2015),
bilevel programming (Lavlinskii, Panin and Plyasunov, 2015; Panin, Pashchenko and Plya-
sunov, 2014; Iellamo, Alekseeva, Chen, Coupechoux and Kochetov, 2015), etc. The conver-
gence conditions and bounds for effectiveness of these methods are obtained in (Aarts, Korst
and van Laarhoven, 1997; Brimberg, Hansen and Mladenovic, 2010; Kochetov, 2011; Bernhard
and Jens, 2012). Below we propose a variant of the TS algorithm to find the best permutation
for the problem (2.1)-(2.16).
Denote by N(π) a set of permutations which can be obtained from π by one of swap or move
operations. In the swap operation, two elements swap their positions in the permutation. In the
move operation, one element is moved to a new position. It is easy to see that arbitrary per-
mutation, in particular the optimal permutation, can be obtained from another one by at most n
steps to neighboring solutions. As a tabu list (Tabu), we use the pairs of permutation elements
after their swapping or the element with its previous position after moving to a new position.
The length of the tabu list is a constant TL. The list Tabu contains only the information about
the last TL modifications of the current permutation. We forbid TL neighboring permutations,
which can be expressed in the pairs of numbers: swapping two elements again or returning
an element to its previous position. As a randomized neighborhood NK(π, Tabu), we use a
random subset of K non-forbidden elements from the neighborhood N(π). We pick up these
K elements with uniform distribution. The pseudo-code of the TS algorithm is presented in
Algorithm 2.
To create the initial permutation, we design a greedy algorithm based on an idea of the minimal
distance between the nearest orders. At each step of the algorithm, we select a new order
which requires the minimal new items from storage. We use each order as the first one and
select the best result for the initial permutation. The parameter kstop controls the running time
of the TS algorithm. We terminate the calculations as the incumbent permutation π∗ does
not change during kstop iterations of the local search. Parameter K controls the running time
of each iteration. The large values allow us to intensify the search in the current region of the
feasible domain but increase the efforts for each iteration. The small values reduce the running
time and allow us to diversify the search. In our computational experiments, we try to find an
optimal balance between these opportunities.



1 Create an initial permutation π, π∗ ← π, k ← 1;
2 while k < kstop do
3 Generate the neighborhood NK(π,Tabu);
4 π′ ← argmin{Cmax(π

′′) | π′′ ∈ NK (π,Tabu)};
5 Update the list Tabu and put π ← π′;
6 if Cmax(π

′) < Cmax(π
∗) then

7 π∗ ← π′; k ← 1;
8 else
9 k ← k + 1;

10 end

11 end
12 return the best found permutation π∗;

Algorithm 2: Randomized Tabu Search(K,TL, kstop)

3.3 Simulated annealing

Simulated annealing (SA) (Kirkpatrick, Gelatt and Vecchi, 1983) also belongs to the class of
trajectory methods and is very popular for two reasons. First, it is quite simple and successful
in many applications. Second, it is interesting to mathematicians due to its asymptotic con-
vergence properties under some mild constraints for the set of neighboring solutions. Unfor-
tunately, the convergence requires an exponential number of iterations, making SA impractical
to find the optimal solution. Nevertheless, it can be used for sophisticated models, like (2.1)-
(2.16), as an approximation algorithm with many iterations to compare with other algorithms.
The pseudo-code of the SA algorithm is presented in Algorithm 3.

1 Create an initial permutation π, π∗ ← π, α← αmax ;
2 while α > αmin do
3 Choose a permutation π′ ∈ N(π) randomly;
4 ∆← Cmax(π

′)− Cmax(π);
5 if ∆ ≤ 0 then
6 π ← π′

7 else
8 π ← π′ with probability exp (−∆/α);

9 end
10 α← α · β;
11 if Cmax(π

′) < Cmax(π
∗) then π∗ ← π′ ;

12 end
13 return the best found permutation π∗;

Algorithm 3: Simulated Annealing(αmin, αmax, β )

In each step of the SA, we move to a neighboring permutation selected at random with uniform
distribution if it is better than the current one. Otherwise, we can move with a probability
that depends on the temperature (parameter α). The SA starts with high temperature αmax



and terminates with the low temperature αmin. The cooling schedule is determined by the
parameter β < 1.

3.4 Hybrid TS-SA algorithm

Now we present a hybrid randomized local search algorithm (HTS) with intensification and
diversification stages. We apply the randomized TS algorithm and return to the best-found
permutation π∗ if we cannot improve this solution during krestart iterations. To intensify the
search in this region, we enlarge the number of neighboring permutations K (line 13). To
diversify the search, we apply the SA algorithm with low temperature and return the initial value
of the parameter K (lines 15-16). The HTS algorithm terminates after the Rstop intensification
and diversification stages. The pseudo-code of the hybrid algorithm is presented in Algorithm
4.

1 Create an initial permutation π, π∗ ← π, R← 0, k ← 0, Intensification← true;
2 while R < Rstop do
3 Generate the neighborhood NK(π,Tabu);
4 π′ ← argmin{Cmax(π

′′) | π′′ ∈ NK (π,Tabu)};
5 Update the list Tabu and put π ← π′;
6 if Cmax(π

′) < Cmax(π
∗) then

7 π∗ ← π′; k ← 0;
8 else
9 k ← k + 1;

10 end
11 if k > krestart then
12 if Intensification then
13 π ← π∗; enlarge the number of neighbors K;
14 else
15 Start the SA from the current permutation π; s← the last permutation of the SA;
16 Reduce the number of neighbors K;

17 end
18 R← R+ 1; k ← 0; Intensification← ¬Intensification;

19 end

20 end
21 return the best found permutation π∗;

Algorithm 4: Hybrid Tabu Search algorithm(Rstop, krestart)

The most time-consuming step of the algorithm is to find the best non-forbidden neighboring
permutation (line 4). To accelerate the search, we can do it in parallel. We use all available
cores of the personal computer for it in the TS and the HTS algorithms. For the SA, it is not
used.



4 Computational experiments

We conduct the computational experiments on the semi-synthetic test instances obtained from
a large electronic device manufacturer with up to 345 orders, 121 types of items, 30 transport
robots, and 16 identical parallel machines. Each order requires at most 8 pallets. Detailed
parameters of the instances can be found in the Appendix. We use 20,000,000 iterations
as the stopping criterion for the SA and 3000 iterations without improvement for the TS. The
running time for large-scale instances on AMD Ryzen 5 3600 3.6GHz with 12 logical cores is
about 400 seconds for the SA, 150 seconds for the parallel TS, and 500 seconds for the HTS.
In our preliminary computational experiments, we tune the control parameters of the meta-
heuristics. As a result, we apply the following values for the TS: the length of tabu list TL = 3n,

the number of neighboring permutations K is at most 104, the number of iterations kstop without
improvement of the incumbent permutation π∗ is 2000. For the SA, we use αmax as a sufficiently
large number for moving in arbitrary neighboring solution. To this end, we define αmax as the
maximum difference between lengths of solutions in the neighborhood for the initial permuta-
tion. The cooling schedule is determined in such a way to perform approximately kmax = 2 ·107

iterations and put β = (−αmax log 10
−2)−1/kmax , αmin = −1/ log 10−2. For the HTS, we use

Rstop = 20, krestart = 500, default neighborhood size K is 2 · 103, extended neighborhood size
is 104. The SA runs 1000 iterations with αmax = 100.
Table 1 shows the results of computational experiments. For each test instance, we run the
algorithms 10 times and show the best (TSb, SAb, HTSb), the worst (TSw, SAw, HTSw), and
the average (TSa, SAa, HTSa) results. The best heuristic results are presented in bold for
each instance. Moreover, we include the lower bound (LB) as the best lower bound provided
by the Gurobi solver for four models: the whole model (2.1)-(2.16), the simplified model without
constraints for robots, the model without constraints for the parking slots, and the model without
constraints for robots and parking slots. We terminate Gurobi after an hour of calculations for
each model and return the final lower bounds obtained. It is slightly better than LP bounds.

Table 1: Total experimental results

n TSb TSw TSa SAb SAw SAa HTSb HTSw HTSa LB

14 2698 2698 2698.0 2698 2698 2698.0 2698 2698 2698.0 2329

21 2339 2339 2339.0 2339 2339 2339.0 2339 2339 2339.0 2339

21 2666 2666 2666.0 2666 2666 2666.0 2666 2666 2666.0 2339

21 2442 2483 2453.9 2442 2442 2442.0 2442 2442 2442.0 2442

25 2098 2140 2116.9 2098 2098 2098.0 2098 2098 2098.0 1805

27 2476 2538 2504.2 2455 2476 2466.2 2455 2455 2455.0 2128

27 2775 2782 2777.8 2775 2775 2775.0 2775 2775 2775.0 2775



n TSb TSw TSa SAb SAw SAa HTSb HTSw HTSa LB

45 1794 1794 1794.0 1794 1794 1794.0 1794 1794 1794.0 1794

45 3499 3772 3609.7 3487 3577 3535.3 3479 3500 3488.1 3473

54 1996 2059 2022.2 1982 2052 2003.1 1954 1968 1959.7 1629

68 4095 4293 4212.6 3965 4215 4066.1 3970 4005 3984.0 3814

76 2972 3002 2987.8 2903 2979 2943.8 2856 2891 2881.3 2054

77 4925 4926 4925.8 4925 4926 4925.8 4925 4925 4925.0 4689

89 3029 3513 3170.3 3057 3133 3091.4 3005 3029 3017.3 2266

89 4544 4864 4672.3 4387 4613 4473.8 4350 4445 4403.6 3808

91 6589 6652 6615.4 6581 6672 6597.1 6581 6582 6581.9 6076

101 2428 2539 2476.3 2428 2477 2451.6 2413 2428 2416.5 2398

101 7408 7409 7408.9 7408 7408 7408.0 7408 7408 7408.0 7408

101 5186 5235 5199.5 5185 5187 5185.8 5185 5186 5185.1 5181

125 5115 5484 5284.5 4883 5031 4955.0 4946 5072 4997.5 3106

127 7551 7553 7552.1 7551 7552 7551.3 7551 7551 7551.0 7208

150 7876 8299 8026.7 7732 7904 7804.9 7750 7835 7776.4 7649

177 5361 5536 5436.5 5132 5285 5217.6 5273 5387 5345.8 3821

178 10153 10855 10530.3 9971 10507 10099.6 9978 10116 10055.7 9834

218 5328 5454 5420.0 4992 5119 5058.8 5145 5251 5188.4 4499

218 9299 9592 9437.6 9116 9355 9247.2 9222 9342 9286.3 8269

319 7717 8050 7812.9 7310 7611 7494.4 7637 7780 7719.2 6454

345 27298 27370 27323.9 27293 27305 27294.6 27293 27294 27293.5 27293

We can see that 6 test instances are easy for all heuristics, and the optimal solutions are
discovered. For other instances, we can observe that the SA shows slightly better results than
the HTS. In many cases, the results coincide. For the worst instance for the HTS (n = 319) the
relative deviation between the SA and the HTS: ε = 100%(SAb −HTSb)/SAb is at most 4.5%.
It is interesting to note that the last test instance (n = 345) is easy to solve. We find the optimal
solution and can prove the optimality. If we compare it with the previous one (n = 319), we see
the same number of robots, 6 parking slots only, and a small number of machines (m = 4). We
guess that 8 packing slots for 16 machines is a tough combinatorial case, and the case of 6
parking slots for 4 machines has more freedom and is easy from this point of view.



5 Conclusion

We have considered a new scheduling problem for identical parallel picking machines with
limited parking slots and fleet transport robot constraints. It is an NP-hard combinatorial op-
timization problem originating from order picking at an automatic warehouse. We design the
mixed-integer linear program and apply the commercial software Gurobi to find lower and up-
per bounds for makespan. Our computational experiments have shown that it is useful for small
test instances only. Therefore, we have developed metaheuristics based on the order permu-
tation decoding procedure. It is a fast polynomial time algorithm to create an active schedule
under the fleet robot constraint. We have adopted the Tabu Search and Simulated Annealing
frameworks and developed a Hybrid TS-SA algorithm to tackle the problem. Computational
experiments were conducted on the semi-synthetic test instances obtained from a large elec-
tronic device manufacturer with up to 345 orders, 121 types of items, 30 transport robots, and
16 identical parallel machines. Each order requires at most 8 pallets. The proposed approach
is compared to the lower bound with and without the robot fleet and parking slots constraints.
Unfortunately, this lower bound is weak for large-scale instances. Thus, we apply the asymp-
totically exact SA metaheuristic with a huge number of iterations to compare results for the
HTS algorithm. We have found the optimal solutions for 6 test instances and observed small
deviations between the SA and the HTS. For future research, it is interesting to modify the
decoding procedure and combine the order permutations with item permutations.
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Appendix A. Test data parameters

Table 2: Test data parameters

n m C P W min pi max pi min |Li| max |Li|

14 6 30 6 714 230 1044 1 6

21 16 30 8 702 216 1211 1 5

21 6 30 5 709 216 1630 1 5

21 6 30 3 720 216 355 1 3

25 6 30 4 704 216 320 1 4

27 6 30 6 735 216 682 1 5



n m C P W min pi max pi min |Li| max |Li|

27 4 30 8 735 216 682 1 5

45 16 30 8 742 223 989 1 4

45 6 30 4 742 223 989 1 4

54 16 30 8 721 216 571 1 5

68 6 20 5 743 216 933 1 5

76 16 30 8 736 216 627 1 6

77 6 20 5 746 216 1630 1 5

89 16 30 8 716 216 794 1 6

89 8 20 6 716 216 794 1 6

91 6 20 6 744 216 1630 1 6

101 16 30 8 728 216 877 1 5

101 4 30 6 728 216 877 1 5

101 6 20 5 728 216 877 1 5

125 16 30 8 729 216 933 1 6

127 6 20 8 733 216 1630 1 8

150 6 20 6 742 216 982 1 6

177 16 30 8 731 216 1253 1 8

178 6 20 6 739 216 1128 1 6

218 16 30 8 729 216 1630 1 5

218 8 20 5 729 216 1630 1 5

319 16 30 8 731 216 1211 1 6

345 4 30 6 718 216 1630 1 6


