
Speed Scaling Scheduling of Multiprocessor Jobs with
Energy Constraint and Total Completion Time Criterion

Alexander V. Kononov1 and Yulia V. Zakharova2

1Sobolev Institute of Mathematics
Novosibirsk, Russia

alvenko@math.nsc.ru

2Sobolev Institute of Mathematics
Dostoevsky Omsk State University

Omsk, Russia
julia.kovalenko.ya@yandex.ru

ABSTRACT

We consider the problem of speed scaling scheduling multiprocessor jobs under the given
energy budget. A multiprocessor job must be performed by more than one processor at
a time. The speed of a processor may be different for different jobs. Running a job at a
lower speed is more energy efficient. However, this takes a longer time and affects the
performance. Our goal is to minimize the total completion time of jobs. We analyze the
complexity of both parallel and dedicated statements of the problem. Approximation and
exact algorithms are proposed for various cases. In our algorithms, a sequence of jobs
and their processing time are calculated at the first stage, and then a feasible solution is
constructed using a greedy rule of list type.

Keywords: multiprocessor job, speed scaling, scheduling, approximation algorithm, NP-
hardness.

2000 Mathematics Subject Classification: 90B35, 68M20, 05A99.

1 Introduction

We consider the following speed scaling scheduling problem. Jobs from the set J = {1, . . . , n}
must be executed on m speed scalable processors. Preemptions of jobs are disallowed. Let
Vj denote the processing volume (work) Vj of job j ∈ J . In the parallel statement of the
problem, the number of the required processors sizej are given for each job j ∈ J . Such
jobs are called rigid jobs and may be performed by any subset of processors of the indicated
size (Drozdowski, 2009). In the dedicated version, we investigate single-mode multiprocessor
jobs (Drozdowski, 2009), where a subset of processors fixj is specified for a job j ∈ J . The
instances with moldable and malleable jobs (Drozdowski, 2009) are also analyzed. The job j
is called moldable if it can be executed on arbitrary number of processors up to the given upper
bound on the parallelization level. The number of used processors can be changed during the
schedule for malleable jobs.

We suggest that the homogeneous model with continuous spectrum of processor speeds in
speed-scaling takes place. Here if a processor works with a speed s, then instantaneous
energy consumption (power) is sα, where α > 1 is a constant. The total energy consumption
is power integrated over time. The speed of a processor may be different for different jobs.
When mj processors are utilized for execution of a job j ∈ J , the total volume Vj is uniformly
partitioned between processors, which run at the same speed. In this case Wj :=

Vj
mj

denote
the work of the job j on one processor.
Our goal is to construct a feasible schedule, that minimizes the sum of job completion times∑
Cj and guarantees the summed energy consumption no more than a given budget E. This

is a natural assumption when the battery energy is fixed, i.e., the scheduling problem has
applications in computer devices whose lifespan depends on a limited battery efficiency (for
example, multi-core laptops). Also, bi-criteria settings of minimizing a scheduling metric and
energy consumption arise in real practice. The most obvious approach is to bound one of
the objective functions and optimize the other. The energy of the battery may reasonably be
estimated, so we bound the energy used, and optimize the regular timing criterion.
We use the following classic notations P |sizej , energy|

∑
Cj , P |any, δj , energy|

∑
Cj ,

P |var, δj , energy|
∑
Cj and P |fixj , energy|

∑
Cj for the speed-scaling scheduling with the lim-

ited energy consumption of rigid, moldable, malleable and single-mode jobs, respectively.

2 Previous Research

Pruhs (Pruhs, Uthaisombut and Woeginger, 2008a) et al. studied the problem of minimiza-
tion of the average flow time on a single processor under a fixed amount of energy and given
release dates of jobs. For jobs with unit works, they proposed a polynomial-time algorithm
that constructs a schedule with the minimum average execution time for each possible energy
level. Bunde (Bunde, 2009) generalized this approach to the multi-processor case. O(1)-
approximation algorithm allowing an additional factor of (1 + ε) energy was developed for
scheduling jobs with arbitrary works on a single processor. Albers and Fujiwara (Albers and
Fujiwara, 2007) considered online and offline versions of single-processor scheduling, where
energy consumption plus job flow times is minimized. A deterministic constant competitive
online algorithm and an offline dynamic programming algorithm were developed for unit-work
jobs. In (Bansal, Pruhs and Stein, 2009), the authors give an online speed scaling algorithm
that is O(1)-competitive for the objective of weighted flow time plus energy and arbitrary work
jobs. In the first step, they relax the objective function to be fractional weighted flow plus energy
and then solve the obtained problem. Then the solution obtained at the first step is transformed
with the loss of a small factor in the competitive ratio.
Shabtay et al. (Shabtay and Kaspi, 2006) analyzed the closely related problem of schedul-
ing single-processor jobs on identical parallel processors, where the durations of jobs pj are
resource-dependent in according with the following relation pj(Rj) =

(
Wj

Rj

)κ
. Here Wj is

the workload of job j, Rj is the amount of resources allocated to process job j, 0 < κ ≤ 1

is a positive constant. An exact polynomial time algorithm was provided for multiprocessor
non-preemptive cases with

∑
j Cj criterion. The algorithm can be applied to speed scaling

scheduling of single-processor jobs.
Speed scaling scheduling with the makespan objective has been extensively researched. Vari-
ous approaches to the construction of approximation algorithms for single-processor and multi-
processor jobs have been proposed (see, for example, (Kononov and Kovalenko, 2020; Bunde,
2009; Pruhs et al., 2008a)).
Now we present the known results for the parallel and multiprocessor jobs under given dura-
tions and without consideration of energy consumption. The problem for non-preemptive rigid
jobs is strongly NP-hard even in the case of two processors (Lee and Cai, 1999), and it is NP-
hard for preemptive settings when the number of processors is part of the input (Drozdowski
and Dell’Olmo, 2000). Approximation algorithms with a constant factor approximation guaran-
tee have been proposed for the non-preemptive cases. These algorithms use scheduling rules
of list type (Turek, Ludwig, Wolf, Fleischer, Tiwari, Glasgow, Schwiegelshohn and Yu, 1994)
and scheduling to minimize average response time (SMART) (Schwiegelshohn, Ludwig, Wolf,
Turek and Yu, 1998). The problem of scheduling non-preemptive jobs of single-mode type
on two processors is NP-hard (Hoogeveen, van de Velde and Veltman, 1994) and strongly
NP-hard for two-processor jobs (Kubale, 1996). A reconstruction of a preemptive schedule to
the non-preemptive one yields a 2-approximation algorithm for two-processor instances (Cai,
Lee and Li, 1998), and First Fit Coloring approach provides a 2-approximate solution for two-
processor jobs with unit works (Giaro, Kubale, Maiafiejski and Piwakowski, 1999).
Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient for solutions of convex op-
timization problems to be optimal (Kuhn and Tucker, 1951; Boyd and Vandenberghe, 2004).
The Karush-Kuhn-Tucker conditions are often applied in algorithmic technics for scheduling
problems and convex resource consumption functions. The classic Karush-Kuhn-Tucker con-
ditions allow the identification of the structural properties of optimal schedules and developing
combinatorial algorithms. See examples in (Bampis, Letsios and Lucarelli, 2014; Shabtay
and Kaspi, 2006; Angel, Bampis, Kacem and Letsios, 2012; Pruhs, Uthaisombut and Woegin-
ger, 2008b; Bansal and Pruhs, 2005; Bampis, Letsios, Milis and Zois, 2016) for problems with
convex resource consumption functions and various criteria. We use Karush-Kuhn-Tucker con-
ditions for solving auxiliary convex programs to compute bounds on the criteria in NP-hardness
proofs and approximation algorithms.

Our results.

We prove NP-hardness of scheduling problems P |sizej ≤ m
2 , energy|

∑
Cj and P |fixj , |fixj | =

2, energy|
∑
Cj , and develop two-stage approximation or exact algorithms for the following par-

ticular cases:

• rigid jobs,

• moldable jobs,

• two-processors parallel and dedicated instances,

• single-processor instances,

• fully-parallelizable jobs,

• incompatible jobs.

At the first stage, we compute a lower bound on the total execution time and find a sequence
and durations of jobs using a convex program of specific structure. Then, at the second stage,
we reformulate our problem as a classical scheduling problem without speed scaling and ap-
ply ”list-scheduling“ methods and more complex approaches to construct feasible solutions.
Whenever a subset of processors is idle, the ”list-scheduling“ method schedules the first job in
the list that does not require more processors than are available.

3 Rigid Jobs

In this section, we consider rigid jobs. Firstly, we prove that the problem is NP-hard. Secondly,
we present an approximation algorithm for the instances, where sizes and workloads of jobs
are agreeable.

3.1 NP-hardness

Theorem 3.1. Problem P |sizej ≤ m
2 ,Wj = 1, energy|

∑
Cj is NP-hard in the strong sense.

Proof. We prove that the strongly NP-complete 3-PARTITION problem can be reduced to the
decision version of problem P |sizej ≤ m

2 ,Wj = 1, energy|
∑
Cj .

Let we are given an instance of the 3-PARTITION problem: a set of 3q elements with weights
aj , j = 1, . . . , 3q, where

∑3q
j=1 aj = Bq and B

4 < aj <
B
2 . Could the set be partitioned into q

subsets A1, . . . , Aq such that
∑

j∈Ai aj = B?
An instance of P |sizej , energy|

∑
Cj is constructed as follows. Put the number of jobs n = 3q,

the number of processors m = B, and the energy budget E = Bq. For every aj we generate
a job j, j = 1, . . . , 3q. We set Wj = 1, sizej = aj , Vj = aj for j ∈ J . In the decision version
of P |sizej ,Wj = 1, energy|

∑
Cj it is required to answer the question: Is there a schedule with∑

Cj value not greater than a given threshold T?
To determine the value of T we solve an auxiliary problem with

∑3q
j=1 aj single-processor jobs

of the unit works, i.e. each rigid job is replaced by sizej single-processor jobs. Such problem
has the unique optimal solution (with the accuracy of placing jobs on processors and permuting
jobs on each processor), where each processor executes q jobs and uses energy budget q.
Now we find optimal durations of jobs on each processor, using the following convex model:

q∑
j=1

pj(q − j + 1)→ min, (3.1)

q∑
j=1

p1−α
j = q, (3.2)

pj ≥ 0, j = 1, . . . , q. (3.3)

Here pj is the duration of j-th job on a processor, j = 1, . . . , q.
We compose the Lagrangian function L(pj , λ) =

∑q
j=1 pj(q − j + 1)+ λ

(∑q
j=1 p

1−α
j − q

)
.

Equate partial derivatives to zero:

∂L

∂pj
= (q − j + 1) + λ(1− α)p−αj = 0, pj =

(
λ(α− 1)

q − j + 1

)1/α

, j = 1, . . . , q.

Place this expression into (3.2) and obtain

q∑
j=1

(
λ(α− 1)

q − j + 1

)1−α/α
= q, (λ(α− 1))1/α =

(∑q
j=1(q − j + 1)α−1/α

q

)1/α−1

.

Then we calculate the optimal solution:

p∗j =

(∑q
j=1(q − j + 1)

α−1
α

) 1
α−1

q
1

α−1 (q − j + 1)
1
α

, j = 1, . . . , q,

∑
C∗j =

q∑
j=1

pj(q − j + 1) =

 q∑
j=1

(n− j + 1)
α−1
α

 α
α−1

q
1

1−α .

Note that each next job has more duration than the previous one. The optimal schedule for
each processor does not have idle times. The optimal total completion time for all processors
is equal to m

∑
C∗j . Set the threshold T := 3

∑
C∗j , since at most three rigid jobs can be

performed simultaneously.
We show that a positive answer to the constructed problem P |sizej , energy|

∑
Cj with

∑
Cj ≤

T implies a positive answer to 3-PARTITION and otherwise. Indeed,
∑
Cj ≥ 3

∑
C∗j for any

feasible schedule of the stated instance due to the previously presented relaxation to single-
processor jobs with the same total work. So, a feasible schedule with

∑
Cj = T exists if and

only if all processors perform q jobs, and every three jobs, executed in parallel and using all
available processors, correspond to three elements forming set Ai such that

∑
j∈Ai aj = B,

i = 1, . . . , q. This schedule is similar to the optimal one of the corresponding problem with
single-processor jobs (see example in Fig. 1).
The presented reduction is polynomial. So, problem P |sizej ≤ m

2 ,Wj = 1, energy|
∑
Cj is

strongly NP-hard.
Now we go to construct an approximation algorithm for the considered problem with rigid jobs
satisfying specific property on the volumes and sizes. A problem-dependent convex program
allows us to calculate speeds of jobs. We will use the “list-scheduling” method to find a feasible
solution with approximation guarantee.

3.2 Approximation Algorithm

The order of jobs, and as a result the completion times of all jobs play important role in the
problems with the total completion time objective. So, initially we consider the case, when the
order of job starting times is fixed, and calculate a lower bound on the scheduling metric ignor-
ing rectangle nature of the jobs. Assume that the jobs are placed in a schedule according to
the permutation π = (π1, . . . , πn). Using the lower bound on the total completion time provided
in (Turek et al., 1994) for rigid jobs with the given durations, we formulate the following convex
program:

a5=5

a4=2

a1=5

a2=4

a3=3

a6=5

a7=4

a8=4

a9=4

a10=6

a11=5

a12=1

Figure 1: A feasible schedule corresponding to the positive answer of 3-Partition problem:
A1 = {1, 2, 3}, A2 = {4, 5, 6}, A3 = {7, 8, 9}, A4 = {10, 11, 12},

∑
j∈Ai aj = 12.

LB(π) =
1

m

n∑
j=1

j∑
i=1

sizeπipπi +
1

2

n∑
j=1

pπj −
1

2m

n∑
j=1

sizeπjpπj → min, (3.4)

n∑
j=1

Wα
j p

1−α
j sizej ≤ E. (3.5)

pj ≥ 0, j ∈ J . (3.6)

Here πi is the i-th job in accordance with permutation π, pπi is the execution time of job πi on
each of the utilized processors. Recall that Wi = Vi

sizei
for rigid jobs.

Lemma 3.2. The program (3.4)-(3.6) for permutation π of jobs is polynomially solvable and the
optimal objective

LB∗(π) =
E

1
1−α

m

(
n∑
i=1

Wπisizeπi

(
n− i+ 0.5 +

0.5m

sizeπi

)α−1
α

) α
α−1

. (3.7)

Proof. We solve program (3.4)-(3.6) by means of the Lagrangian method. Define the La-
grangian function L(pπj , λ) as

L(pπj , λ) =
1

m

n∑
j=1

j∑
i=1

sizeπipπi +
1

2

n∑
j=1

(
1−

sizeπj
m

)
pπj+

λ

 n∑
j=1

Wα
πjp

1−α
πj sizeπj − E

 .

Because the objective (3.4) is linear function and the constraint (3.5) is represented by convex
function, the necessary and sufficient conditions for an optimal solution are (partial derivatives
are equal to zero) (Kuhn and Tucker, 1951; Boyd and Vandenberghe, 2004):

∂L

∂pπi
=

1

m
sizeπi(n− i+ 1) +

1

2

(
1− sizeπi

m

)
+ λWα

πisizeπi(1− α)p−απi = 0,

i = 1, . . . , n.

Rewriting the expressions, we obtain

pπi = ((α− 1)λm)
1
α

Wπi(
n− i+ 0.5 + 0.5m

sizeπi

) 1
α

, (3.8)

i = 1, . . . , n.

The processing times (3.8) are placed into equation

∂L

∂λ
=

n∑
j=1

Wα
j p

1−α
j sizej − E = 0.

This gives us the following equation

((α− 1)λm)
1−α
α

n∑
j=1

Wπjsizeπj

(
n− j + 0.5 +

0.5m

sizeπj

)α−1
α

= E.

As a result, we calculate the value

((α− 1)λm)
1
α = E

1
1−α

 n∑
j=1

Wπjsizeπj

(
n− j + 0.5 +

0.5m

sizeπj

)α−1
α

 1
α−1

and the durations of jobs from (3.8)

pπi =
E

1
1−αWπi(

n− i+ 0.5 + 0.5m
sizeπi

) 1
α

·

 n∑
j=1

Wπjsizeπj(
n− j + 0.5 + 0.5m

sizeπj

) 1−α
α

1

α−1

, (3.9)

i = 1, . . . , n.

The obtained values for execution times are placed in expression (3.4) and the lower bound on∑
Cj for an arbitrary permutation π of jobs is calculated as follows

LB∗(π) =
E

1
1−α

m

(
n∑
i=1

Wπisizeπi

(
n− i+ 0.5 +

0.5m

sizeπi

)α−1
α

) α
α−1

.

Lemma 3.3. Let the non-decreasing order of total works Vj corresponds to the non-decreasing
order of sizej (i.e. Vi < Vj implies sizei ≤ sizej for i 6= j ∈ J). Then the minimum value of
LB∗(π) is reached on the permutation, where the jobs are ordered by non-decreasing of the
required processors numbers sizej .

Proof. The minimization of (3.7) is equivalent to the minimization of

G(π) =
n∑
i=1

Vπi

(
n− i+ 0.5 +

0.5m

sizeπi

)α−1
α

.

over all possible permutations π. Let π∗ be the the permutation of jobs in non-decreasing of
sizei-values. Consider two consecutive jobs in π∗, say π∗i and π∗i+1, for which sizeπ∗

i
= x,

sizeπ∗
i+1

= y, Vπ∗
i

= Vx, Vπ∗
i+1

= Vy and x ≤ y, Vx ≤ Vy. These jobs give

g(π∗, i) = Vx

(
n− i+ 0.5 +

0.5m

x

)α−1
α

+ Vy

(
n− i− 0.5 +

0.5m

y

)α−1
α

in G(π∗). Suppose π′ = (π∗1, . . . , π
∗
i−1, π

∗
i+1, π

∗
i , π
∗
i+2, . . . , π

∗
n) and

g(π′, i) = Vy

(
n− i+ 0.5 +

0.5m

y

)α−1
α

+ Vx

(
n− i− 0.5 +

0.5m

x

)α−1
α

.

Then

g(π∗, i)− g(π′, i) = Vx

((
n− i+ 0.5 +

0.5m

x

)α−1
α

−
(
n− i− 0.5 +

0.5m

x

)α−1
α

)

−Vy

((
n− i+ 0.5 +

0.5m

y

)α−1
α

−
(
n− i− 0.5 +

0.5m

y

)α−1
α

)
≤

(Vx − Vy)

((
n− i+ 0.5 +

0.5m

y

)α−1
α

−
(
n− i− 0.5 +

0.5m

y

)α−1
α

)
≤ 0.

The first inequality follows from Lemma 3.4. Therefore, G(π∗) ≤ G(π′).

Lemma 3.4. Function f(x) =
(
a+ b

x

)α−1
α −

(
a− 1 + b

x

)α−1
α is increasing for x ≥ 1, α > 1, a > 1

and b > 0.

Proof. Compute derivative f ′(x) = − b
x2
· α−1

α

(
a+ b

x

)−1
α + b

x2
· α−1

α

(
a− 1 + b

x

)−1
α = b

x2
·

α−1
α

((
a− 1 + b

x

)−1
α −

(
a+ b

x

)−1
α

)
. It is easy to see that f ′(x) > 0.

From now on, we suppose that the non-decreasing order of Vj corresponds to the non-decreasing
order of sizej (i.e. workloads and sizes of jobs are agreeable). Let the jobs are ordered by
non-decreasing of sizej-values. We denote by p̄j the durations of jobs, and by LB(p̄j) =∑n

j=1

(
1
m

∑j−1
i=1 sizeip̄i + 1

2 p̄j + 1
2msizej p̄j

)
the lower bound corresponding to the optimal solu-

tion of problem (3.4)-(3.6).
We construct a schedule using the “list-scheduling” algorithm: The first job is scheduled at
time 0. The next job is scheduled at the earliest time such that there are enough processors to
execute it (see example in Fig. 2). The running time of the algorithm is O(n2).

Lemma 3.5. Let Vi < Vj implies sizei ≤ sizej for i 6= j ∈ J . The “list-scheduling” algorithm
generates a feasible schedule S with the total completion time at most 2LB(p̄j) for problem
P |sizej ≤ m

2 , energy|
∑
Cj .

j1

j2

 j3

 j4

 j5

j6

j7

j10

j9

j11

j8

j8

Figure 2: A part of the schedule constructed by the “list-scheduling” algorithm.

Proof. Each job utilizes at most half of processors. So, the starting time of job j is not greater
than 2

(
1
m

∑j−1
i=1 sizeip̄i

)
, as at least m2 processors are busy at each time moment in schedule

S. The completion time of job j satisfies condition Cj ≤ 2
m

∑j−1
i=1 sizeip̄i + p̄j . In the sum we

have ∑
j∈J

Cj ≤ 2

 1

m

n∑
j=1

j−1∑
i=1

sizeip̄i +
1

2

n∑
j=1

p̄j

 .

We compare this value with the lower bound LB(p̄j) and conclude that
∑

j∈J Cj ≤ 2LB(p̄j).

Lemma 3.6. Let Wi < Wj implies sizei ≤ sizej for i 6= j ∈ J . The “list-scheduling” algorithm
generates a feasible schedule S with the total completion time at most 2LB(p̄j) for problem
P |sizej , energy|

∑
Cj .

Proof. Note that the durations of jobs p̄j do not decrease in the stated case (see formula (3.9)).
If at least m2 processors are busy at any time instance in S, then we use the same properties
as in the previous Lemma.
Otherwise, assume that l is the last job, that requires less than m

2 processors. By the construc-
tion of S, less than m

2 processors may be busy only in interval I := [Cl − p̄l, Cl+1 − p̄l+1). We
denote the length of interval I by ∆, and let h be the minimal number of processors utilized in
I. Note that sizel ≤ h < m

2 because job l is performed during all interval I.
It is easy to see that at every point in time during interval [0, Cl − pl) schedule S uses at least
m− sizel + 1 ≥ m−h+ 1 processors. (Otherwise, job l should be started earlier.) Moreover, at
least m−h+ 1 processors are utilized in interval [Cl+1− p̄l+1, Cn) as job (l+ 1) is not executed
in interval I and sizej ≥ sizel+1 for all j > l + 1.
Consider a job j > l. The completion time of this job is not greater than

1

m− h+ 1

(
j−1∑
i=1

sizeip̄i −∆h

)
+ ∆ + p̄j .

Now we prove that ∆ − h
m−h+1∆ + p̄j ≤ 2

(
1
2 p̄j +

sizej p̄j
2m

)
. Indeed, due to ∆ ≤ p̄l < p̄j ,

sizej + h > m and m > 2h we have

∆− h

m− h+ 1
∆ + p̄j <

(
m− 2h+ 1

m− h+ 1
+ 1

)
p̄j =

2m− 3h+ 2

m− h+ 1
p̄j =

(2m− 3h+ 2)(2m)

(m− h+ 1)(2m− h)
· (2m− h)

(2m)
p̄j =

4m2 − 6mh+ 4m

2m2 − 3mh+ 2m+ (h2 − h)

(
1

2
+
m− h

2m

)
p̄j ≤

2

(
1

2
+
m− h

2m

)
p̄j < 2

(
1

2
p̄j +

sizej p̄j
2m

)
.

Therefore, the completion time of job j > l is less then 2
(

1
m

∑j−1
i=1 sizeip̄i + 1

2 p̄j +
sizej p̄j

2m

)
.

Moreover, the completion time of job j ≤ l is not greater than 2
m

∑j−1
i=1 sizeip̄i + p̄j as at least

m− sizel + 1 > m
2 are busy in interval [0, Cl − pl). In the sum of completion times over all jobs

we have ∑
j∈J

Cj < 2
n∑
j=1

(
1

m

j−1∑
i=1

sizeip̄i +
1

2
p̄j +

sizej p̄j
2m

)
.

Therefore, the following theorems take place.

Theorem 3.7. A 2-approximate schedule can be found in polynomial time for problem P |sizej ≤
m
2 , energy|

∑
Cj , in which the non-decreasing order of Vj corresponds to the non-decreasing

order of sizej .

Theorem 3.8. A 2-approximate schedule can be found in polynomial time for scheduling prob-
lem P |sizej , energy|

∑
Cj , in which the non-decreasing order of Wj =

Vj
sizej

corresponds to the
non-decreasing order of sizej .

When sizei ≤ sizej implies Wi < Wj , then we also have Vi = Wisizei < Vj = sizejWj , but the
converse statement is not true in the general case. So, the condition on the input parameters
in Theorem 3.8 guarantees the condition in Theorem 3.7, but not vice versa.

3.3 Two-processor Instances

Here we consider the two-processor problem P2|sizej , energy|
∑
Cj with arbitrary workloads

of jobs and propose a 2-approximation algorithm. Our algorithm has the following main idea.
Given an instance of P2|sizej , energy|

∑
Cj , we construct a single processor problem 1|energy|

∑
Cj ,

such that the optimal objective value is a lower bound for that of problem P2|sizej , energy|
∑
Cj .

Then we construct a feasible solution for the initial two-processor problem, using the same or-
der of job starting times as that in the optimal sequence for 1|energy|

∑
Cj , but modifying

processing times of jobs.
Let (P2) denote the original problem P2|sizej , energy|

∑
Cj with job-volumes Wj and energy

budget E. Formulate a single-processor problem (P1) with job-volumes W ′j and energy budget
E′ constructed from (P2) by letting W ′j =

Wj

2 for single-processor jobs, W ′j = Wj for two-
processor jobs and E′ = E

2 . Since (P1) is a single-processor problem, the ordering of jobs in
non-decreasing volumes corresponds to an optimal solution, which can be found in polynomial
time (see Subsection 6.1).
The following lemma shows that the optimal objective value

∑
C∗j (P1) of (P1) is a lower bound

on the optimal objective value
∑
C∗j (P2) of (P2).

Lemma 3.9.
∑
C∗j (P1) ≤

∑
C∗j (P2).

Proof. Let S2 be an arbitrary solution of (P2). Construct a solution S1 of (P1), decreas-
ing the durations of single-processor jobs in two times and non-changing processing times
of two-processor jobs. So the energy consumption will be not greater than E/2 = E′, and
all job volumes will be processed. Moreover, S1 is generated such that the completion time
Cj(S1) of any job j in S1 is not greater than that Cj(S2) in S2. Therefore,

∑
C∗j (P1) ≤∑

j∈J Cj(S1) ≤
∑

j∈J Cj(S2) for any schedule S2, in particular for the optimal solution of
(P2). Hence

∑
C∗j (P1) ≤

∑
C∗j (P2).

Approximation Algorithm A.
Step 1: Given an instance (P2), we generate the instance (P1) as described above, reindex
jobs in non-decreasing of volumes W ′j , and find optimal durations p′j .
Step 2: Calculate processing times of jobs for (P2): pj = 2p′j for single-processor jobs and
pj = p′j for two-processor jobs. Assign job j to the first available processor if it uses one
processor, or to two processors when both of them are available if it requires two processors,
keeping the same jobs order as obtained in Step 1.

Lemma 3.10.
∑

j∈J Cj(A) ≤ 2
∑
C∗j (P2).

Proof. Let Cj(P1) be the completion time of job j for (P1) in Step 1, and Cj(P2) be the com-
pletion time of j for (P2) in Step 2. By Lemma 3.9, we have

∑n
j=1Cj(P1) =

∑
C∗j (P1) ≤∑

C∗j (P2). Since in Step 2, we keep the same jobs order as obtained in Step 1, Cj(P2) ≤∑j
i=1 pi for each job j. Note thatCj(P1) =

∑j
i=1 p

′
i ≥

∑j
i=1

pi
2 ≥

1
2Cj(P2). Thus

∑n
j=1Cj(P2) ≤

2
∑n

j=1Cj(P1) ≤ 2
∑
C∗j (P2).

Theorem 3.11. A 2-approximate schedule can be found in O(nlogn) time for scheduling prob-
lem P2|sizej , energy|

∑
Cj .

4 Moldable Jobs

In this section, we consider the scheduling instances with moldable jobs. Recall that Vj denote
the total processing volume of job j, i.e. the execution time of this job on one processor with
unit speed. Let δj ≤ m be the maximal possible number of processors, that may be utilized
by job j. We consider the linear case, when the runtime of a job decreases linearly with the
number of processors assigned to it.
Suppose that the non-decreasing order of total works Vj corresponds to the non-decreasing
order of δj (i.e. Vi < Vj implies δi ≤ δj). In order to obtain a lower bound on the sum of
completion times, we formulate the following convex model in the case of the given sequence
π of jobs

1

m

n∑
j=1

j∑
i=1

pπi +
1

2

n∑
j=1

pπj
δπj
− 1

2m

n∑
j=1

pπj → min, (4.1)

n∑
j=1

V α
j p

1−α
j ≤ E, (4.2)

pj ≥ 0, j ∈ J . (4.3)

Here pj is the duration of job j on one processor in the total volume Vj . The duration of job j
on mj ≤ δj processors will be equal to pj

mj
.

Using the same properties as in Lemma 3.3 from Subsection 3.2, we can show that the mini-
mum of (4.1), say

LB(π) :=
E1/1−α

m

 n∑
j=1

Vπj

(
n− j + 0.5 +

0.5m

δπj

)α−1/α
α/α−1

,

is reached on the permutation π∗, where the jobs are ordered by non-decreasing of the maxi-
mum processors numbers δj , j ∈ J , The corresponding duration of a job on one processor in
the total volume will be equal to

p∗π∗
i

=
E

1
1−αVπ∗

i(
n− i+ 0.5 + 0.5m

δπ∗
i

) 1
α

·

n∑
j=1

V ∗πj(
n− j + 0.5 + 0.5m

δπ∗
j

) 1−α
α

1

α−1

, (4.4)

i = 1, . . . , n.

Assume that the non-decreasing order of Vjδj corresponds to the non-decreasing order of δj or
the non-decreasing order of Vj corresponds to the non-decreasing order of δj and all δj ≤ m

2 .
Then, if we assign the number of utilized processors mj := δj for all jobs j ∈ J , and construct
a feasible schedule by the “list-scheduling” algorithm with processing times

p∗j
δj
, j ∈ J and

sequence of jobs π∗, then we obtain a 2-approximate solution as in the case of rigid jobs.
Now we show that a 2-approximate solution can be found for the more general case, when the
non-decreasing order of Vj corresponds to the non-decreasing order of δj and δj are arbitrary.
We assign the number of processors mj for jobs as follows

mj =

δj if δj <
⌈
m
2

⌉
,⌈

m
2

⌉
if δj ≥

⌈
m
2

⌉
,

and construct a schedule using the “list-scheduling” algorithm based on the order of jobs in
non-decreasing of δj , j ∈ J . Let us prove that the total completion time

∑
Cj(p

∗
j) ≤ 2LB(π∗).

Indeed, at least m2 processors are busy at each time moment in the schedule, so

∑
Cj(p

∗
j) ≤

2

m

n∑
j=1

j−1∑
i=1

p∗π∗
i

+

n∑
j=1

p∗π∗
j

mj
=

2

m

n∑
j=1

j∑
i=1

p∗π∗
i

+

n∑
j=1

p∗π∗
j

mj
− 2

m

n∑
j=1

p∗π∗
j

=

2

m

n∑
j=1

j∑
i=1

p∗π∗
i

+

n∑
j=1

p∗π∗
j

(
1

mj
− 2

m

)
≤ 2

m

n∑
j=1

j∑
i=1

p∗π∗
i

+

n∑
j=1

p∗π∗
j

(
1

δj
− 1

m

)
≤ 2LB(π∗).

Therefore, we obtain

Theorem 4.1. A 2-approximate schedule can be found in polynomial time for scheduling prob-
lem P |any, δj , energy|

∑
Cj , in which the non-decreasing order of Vj corresponds to the non-

decreasing order of δj .

We note here, that the complexity status of speed scaling scheduling problem P |any, Vj =

V, δj , energy|
∑
Cj is open.

5 Single Mode Multiprocessor Jobs

In this section, we consider single-mode multiprocessor jobs. Firstly, we prove that the problem
is NP-hard. Secondly, we provide a constant factor approximation algorithm for two-processor
instances.

5.1 NP-hardness

Theorem 5.1. Problem P |fixj , |fixj | = 2, Vj = 2, energy|
∑
Cj is NP-hard in the strong

sense.

Proof. The proof is similar to the proof of Theorem 3.1, but it is based on the polynomial re-
duction of the strongly NP-complete Chromatic Index problem for cubic graphs (Holyer, 1981).
The chromatic index of a graph is the minimum number of colors required to color the edges of
the graph (form color classes) in such a way that no two adjacent edges have the same color.
Consider an instance of the Chromatic Index problem on a cubic graph G = (V,A), which asks
whether the chromatic index χ′(G) is three. It is well-know that χ′(G) = 3 or 4, and |V | is even.
Moreover, χ′(G) = 3 if and only if each color class has exactly 1

2 |V | edges.
We form an instance of P |fixj , energy|

∑
Cj as follows. Put the number of jobs n = |A|, the

number of processors m = |V | and the energy budget E = 2|A| = 3|V |. Vertices correspond
to processors. For every edge {uj , vj} we generate a job j with fixj = {uj , vj}, j = 1, . . . , |A|.
We set Vj = 2 and Wj =

Vj
|fixj | = 1 for all j = 1, . . . , n. In the decision version of P |fixj ,Wj =

1, energy|
∑
Cj it is required to answer the question: Is there a schedule, in which the total

completion time is not greater than a given threshold T?
In order to define the value of T , we solve an auxiliary problem with 2n single-processor jobs,
i.e. each two processor job is replaced by two single-processor jobs. Such problem has
the unique optimal solution (with the accuracy of permuting jobs on processors), where each
processor executes three jobs and uses energy budget of 3. Now we find optimal durations of
jobs on each processor, using the following convex model:

p1 + 2p2 + p3 → min, (5.1)

3∑
j=1

p1−α
j = 3, (5.2)

pj ≥ 0, j = 1, . . . , n. (5.3)

Here pj is the duration of j-th job on a processor.
We compose the Lagrangian function

L(pj , λ) = (3p1 + 2p2 + p3) + λ
(
p1−α

1 + p1−α
2 + p1−α

3 − 3
)

and calculate

p∗j =
31/1−α

(4− j)1/α

(
3α−1/α + 2α−1/α + 1

)1/α−1
, j = 1, 2, 3, (5.4)

j9

j8
j6

j7
j5

j2
j1

M6

j4

j3

M5

M4

M3

M2

M1
j1

j1

j5

j5

j9

j9

j2

j7

j4

j7

j4

j2

j3

j6

j3

j8

j6

j8

M1

M2

M3

M4

M5

M6

Figure 3: An example of the cubic graph with χ′(G) = 3 (different color classes are marked by
different types of lines) and the corresponding schedule of P |fixj , energy|

∑
Cj .

∑
C∗j =

((
3α−1/α + 2α−1/α + 1

)α
3

)1/α−1

. (5.5)

Here we apply KKT conditions as in the proof of Theorem 3.1. The sum of job completion
times on all processors is equal to m

∑
C∗j . The optimal schedule does not have idle times.

Set the threshold T := m
2

∑
C∗j because at most m

2 two processor jobs can be executed
simultaneously. We prove that a positive answer to the Chromatic Index problem corresponds
to a positive one to the constructed decision version of P |fixj ,Wj = 1, energy|

∑
Cj and

otherwise.
Now we assume that the answer to the Chromatic Index problem is positive. Then there is
a feasible schedule, where m

2 jobs, corresponding to m
2 edges forming one color class, are

executed in parallel (see example in Fig. 3). This schedule is similar to the optimal schedule
of the corresponding problem with single-processor jobs. The value of criterion is equal to
m
2

∑
C∗j .

We now show that if the sum of job completion times is no greater than T = m
2

∑
C∗j , then

the corresponding schedule of jobs must constitute an affirmative answer to the Chromatic
Index problem. Note that each processor must execute 3 jobs of processing work equal to
1. So, the minimum sum of job completion times on each processor is equal to (5.5) and
it is reached, when the energy budget of 3|V | is distributed uniformly between processors.
In this case, the schedule for two-processor jobs is identical to the optimal schedule for the
corresponding single-processor jobs due to threshold T . Therefore, three subsets of m

2 jobs
executed simultaneously give three color classes for the Chromatic Index problem.
The presented reduction is polynomial. So, speed scaling scheduling problem P |fixj ,Wj =

1, energy|
∑
Cj is strongly NP-hard.

j1

 J1

J2

J3

J4

j3

j2

j4 j5

j6

j7

J1

J2

J3

J4

j1

J1

J2

J3

j3

j2

j4 j6

j7

J4

 j5

j2 j3

 j7

Figure 4: An example of single-processor schedules and the resulting preemptive two-
processor schedule constructed by algorithm Apr.

5.2 Two-processor Instances

Here a constant-factor approximation algorithm is presented for the two-processor problem
(denoted by P). Let Ji be the subset of jobs, that requires only processor i = 1, 2, and J12 is
the subset of jobs with fixj = {1, 2}, i.e. J = J1 ∪J2 ∪J12. We identify two subproblems: the
first subproblem P1 is induced by jobs J ′ = J1 ∪J12, |J ′| = n′, and the second subproblem P2

contains only jobs J ′′ = J2 ∪ J12, |J ′′| = n′′.
The optimum

∑
C1
j (
∑
C2
j) of P1 (P2) is reached on the permutation, where the jobs are

ordered by non-decreasing of values Wi|fixi|1/α, i ∈ J ′ (Wi|fixi|1/α, i ∈ J ′′), see Sub-
section 6.3. The value max{

∑
C1
j ,
∑
C2
j } is the lower bound, say LB(P), for the general

problem P .
Decreasing the energy budget in both subproblems two times, we obtain 21/α−1-approximate
solutions S′ and S′′ for them with the same sequences of jobs as in the case of energy budget
E (see formula (6.5) in Section 6). Let C ′j and C ′′j (p′j and p′′j) denote the completion times
(the durations) of job j in S′ and S′′, respectively. Note that subsequences of two-processor
jobs are identical in optimal solutions of both subproblems. Now we construct a preemptive
schedule for the general problem and then transform this schedule to the non-preemptive one.

Approximation Algorithm Apr for Preemptive Scheduling.
1. We non-preemptively schedule two-processor jobs j in time intervals (max{C ′j , C ′′j } −
min{p′j , p′′j }, max{C ′j , C ′′j }].
2. Single-processor jobs are executed without idle times in the same sequence as in S′ and
S′′ (durations are not changed). Two-processor jobs may preempt single-processor ones.

Note that execution intervals of two-processor jobs do not intersect each other, therefore, the
constructed preemptive schedule is feasible (see example in Fig. 4). The total completion time∑
Cj(Apr) ≤ 2 · 21/α−1LB(P) as the completion times of jobs are no later than in S′ and S′′ by

construction.
Now we go to calculate a non-preemptive feasible schedule. The obtained preemptive sched-
ule may be reconstructed without increasing the completion times of jobs such that at most

j1

J1

J2

J3

J4

j1

j1 j2

j3

 j6 j7 j4 j5

j6

j7

j1

J1

J2

J3

J4

j1

j1 j2

j3

j2

j6 j7 j5 j4 j5

j6

j7

Figure 5: Reconstruction of the preemptive schedule.

one single-processor job is preempted by each two-processor job (if a two-processor job j pre-
empts two single-processor jobs i and i′, then changing the starting time of j to the maximum
of starting times of i and i′ and moving the corresponding parts of i and i′ later will lower the
completion time of j without affecting the completion times of any other jobs, see Fig. 5). Let
S′(j) and C ′(j) denote the starting time and completion time, respectively, of any job j in the
reconstructed preemptive schedule.

Approximation Algorithm Anpr for Non-Preemptive Scheduling.
1. Identify single-processor jobs ji1 , ji2 , . . . , jik that are preempted by some two-processor
jobs. Suppose that these jobs are ordered by increasing of starting times S′(ji1) < · · · <
S′(jik), and therefore completion times satisfy C ′(ji1) < · · · < C ′(jik).
2. The main construction procedure consists of k steps.
At step l we move job jil . Let F (jil) be the last two-processor job that preempts jil , g(jil) be the
amount of duration of jil scheduled before the starting time of F (jil), h(jil) be the number of
jobs that complete later than F (jil), l = 1, . . . , k. Change the start time of jil to the completion
time of F (jil) and increase starting times of the subsequent jobs by g(jil).

Lemma 5.2. Algorithm Anpr generates a feasible schedule with the total completion time∑
Cj(Anpr) ≤ 2

∑
Cj(Apr) ≤ 22α−1/α−1LB(P) for problem P2|fixj , energy|

∑
Cj .

Proof. At step l (see Fig. 6), inserting the idle time period will increase the total completion
time of the schedule by g(jil) · h(jil), and in total after all steps the non-preemptive schedule
has the objective value

∑
Cj(Anpr) ≤

∑
Cj(Apr) +

k∑
l=1

g(jil) · h(jil).

Since each two-processor job preempts at most one single-processor job, the time intervals
(S′(ji1), C ′(F (ji1)], (S′(ji2), C ′(F (ji2)],. . . , (S′(jik), C ′(F (jik)] do not overlap with each other.
Therefore,

∑
Cj(Apr) ≥

k∑
l=1

(
C ′(F (jil))− S

′(jil)
)
· h(jil) >

k∑
l=1

g(jil) · h(jil).

j1

J1

J2

J3

j2

 j6 j7 j4 j5

j6

j1

J1

J2

J3

j1

j1 j2

 j6 j7 j4 j5

j6

J4

J4

Figure 6: Step l = 1 in approximation algorithm Anpr.

As a result, we have the following bound on the total completion time

∑
Cj(Anpr) ≤

∑
Cj(Apr) +

k∑
l=1

g(jil) · h(jil) < 2
∑

Cj(Apr) ≤ 22α−1/α−1LB(P).

Theorem 5.3. A 22α−1/α−1-approximate schedule can be found in polynomial time for problem
P2|fixj , energy|

∑
Cj .

Theorem 5.4. A 2α/α−1-approximate schedule can be found in polynomial time for problem
P2|fixj , pmtn, energy|

∑
Cj .

The complexity status of both preemptive and non-preemptive problems with two processors
is open.

6 Polynomially Solvable Cases

In this section we provide a polynomial time algorithm for the easy particular cases, when there
is an optimal solution, in which no more than one job is executed at each time moment.
Consider the following convex program in the case when all jobs are executed sequentially in
according to permutation π:

F (π) =

n∑
i=1

(n− i+ 1)pπi → min, (6.1)

n∑
i=1

(Bπi)
αp1−α

πi = E, (6.2)

pj ≥ 0, j ∈ J . (6.3)

Here Bπi is some parameter of job πi, including the volume and the number of utilized proces-
sors.
In order to find an optimal solution of program (6.1)-(6.3) we use the Lagrangian method con-
structing the Lagrangian function

L(pj , λ) =
n∑
i=1

(n− i+ 1)pπi + λ

(
n∑
i=1

(Bπi)
αp1−α

πi − E

)
.

We calculate the partial derivatives, equate them to zero and find the durations of jobs

pπi =
Bπi

(n− i+ 1)
1
α

 n∑
j=1

Bπj (n− j + 1)
α−1
α

 1
α−1

(E)
1

1−α , i = 1, . . . , n. (6.4)

So, the optimal objective for the given sequence π

F ∗(π) =

(
n∑
i=1

Bπi(n− i+ 1)
α−1
α

) α
α−1

(E)
1

1−α . (6.5)

The minimization of (6.5) is equivalent to the minimization of

f(π) =

n∑
i=1

Bπi(n− i+ 1)
α−1
α

over all possible permutations π. We define n-dimensional vectors Bπ = (Bπ1 , Bπ2 , . . . , Bπn)

and N =
(
n
α−1
α , (n− 1)

α−1
α , . . . , 1

α−1
α

)
. Then f(π) can be expressed as the following scalar

product Bπ • (N)T. It is easy to see that the minimum of Bπ • (N)T is reached on the permuta-
tion, where the jobs are ordered by non-decreasing of values Bj , j ∈ J . Indeed, in this case,
the first vector is ordered nondecreasingly, the second one is ordered decreasingly, and the
scalar product is minimal.

6.1 Single-processor Problem

The single-processor problem can be formulated as the following convex program in the case
when a jobs sequence π is given:

∑
j∈J

Cj(π) =
n∑
i=1

(n− i+ 1)pπi → min,

n∑
i=1

(Wπi)
αp1−α

πi = E,

pj ≥ 0, j ∈ J .

So, the minimum sum of completion times is reached on the permutation, where the jobs are
ordered by non-decreasing volumes Wj , j ∈ J .

Theorem 6.1. An optimal schedule can be found in polynomial time for problem 1|energy|
∑
Cj .

6.2 Fully Parallelizable Jobs

Now we show polynomial solvability of the problem with malleable jobs in the case when all jobs
may use up to m processors (so called fully parallelizable jobs). We consider the linear case,
when the runtime of a job decreases linearly with the number of processors assigned to it.

Obviously, there is an optimal schedule where each job utilizes m processors (see, e.g., (Turek
et al., 1994)). Such problem is identical to the problem of minimizing the sum of completion
times of jobs on single processor. Let jobs are ordered in accordance with permutation π and
Wj =

Vj
m , then we have the following convex problem

n∑
i=1

i∑
j=1

pπj =

n∑
i=1

(n− i+ 1)pπi → min,

n∑
i=1

Wα
i p

1−α
i ≤ E

m
,

pj ≥ 0, j ∈ J .

So, the minimum sum of completion times is reached on the permutation, where the jobs are
ordered by non-decreasing of the required works Wi, i ∈ J .

Theorem 6.2. An optimal schedule can be found in polynomial time for problem P |var, δj =

m, energy|
∑
Cj .

6.3 Incompatible Jobs

The jobs are called incompatible when no two jobs can be executed simultaneously. In the
case of single mode jobs this means that fixj ∩ fixi 6= ∅ for all i 6= j ∈ J . Rigid jobs are
incompatible, when all sizej > m

2 , j ∈ J . Such problem is also similar to the single-processor
problem, since at most one job can be performed at each time moment. Suppose that jobs are
ordered in accordance with some permutation π. In order to find optimal durations of jobs and
the objective function for permutation π we solve the following problem:

n∑
j=1

pπj (n− j + 1)→ min,

n∑
j=1

mjpj

(
Wj

pj

)α
= E,

pj ≥ 0, j = 1, . . . , n.

Here mj = |fixj | for single mode jobs and mj = sizej for rigid jobs. The optimal schedule
can be constructed from the optimal solution of the presented model corresponding to the
permutation, where jobs are sequenced in the order of non-decreasing Wjm

1/α
j .

Theorem 6.3. Problem P |fixj , energy|
∑
Cj is polynomially solvable in the case, when fixj ∩

fixi 6= ∅ for all i 6= j ∈ J .

Theorem 6.4. Problem P |sizej , energy|
∑
Cj is polynomially solvable in the case, when sizej >

m
2 for all j ∈ J .

Conclusion

We provide the NP-hardness proofs for scheduling problems with the total completion time
criterion and limited energy consumption. The specific property of the considered problems is
resource-dependent durations of jobs. A method for designing of approximation algorithms is
presented. Here a permutation of jobs and their speeds are identified, and then a schedule is
formed by a greedy technique. The method allows us to obtain approximation guarantees for
instances with rigid and moldable jobs, as well as two-processor cases.
Further research may be undertaken to experimental evaluation of the proposed algorithms.
Open questions are the complexity status of the problem with moldable jobs and two-processor
problems, and a constant factor approximation guarantee for two-processor jobs in the system
with arbitrary number of processors. Moreover, it is interesting to investigate generalizations of
the approach to heterogeneous models of speed scaling and alternative modes of jobs.

Acknowledgment

This work was supported by Russian Science Foundation grant 21-41-09017.

References

Albers, S. and Fujiwara, H. 2007. Energy-efficient algorithms for flow time minimization, DACM
Trans. Algorithms 3(4): 17 p.

Angel, E., Bampis, E., Kacem, F. and Letsios, D. 2012. Speed scaling on parallel processors
with migration, Euro-Par 2012 Parallel Processing, Springer Berlin Heidelberg, Berlin, Hei-
delberg, pp. 128–140.

Bampis, E., Letsios, D. and Lucarelli, G. 2014. A note on multiprocessor speed scaling with
precedence constraints, Proceedings of the 26th ACM symposium on Parallelism in algo-
rithms and architectures (SPAA-14), pp. 138–142.

Bampis, E., Letsios, D., Milis, I. and Zois, G. 2016. Speed scaling for maximum lateness,
Theory Comput Syst 58: 304–321.

Bansal, N. and Pruhs, K. 2005. Speed scaling to manage temperature, STACS 2005, Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 460–471.

Bansal, N., Pruhs, K. and Stein, C. 2009. Speed scaling for weighted flow time, SIAM J.
COMPUT 39(4): 1294–1308.

Boyd, S. and Vandenberghe, L. 2004. Convex Optimization, Cambridge University Press.

Bunde, D. 2009. Power-aware scheduling for makespan and flow, J. Sched. 12: 489–500.

Cai, X., Lee, C.-Y. and Li, C.-L. 1998. Minimizing total completion time in two-processor task
systems with prespecified processor allocations, Naval Research Logistics 45(2): 231–
242.

Drozdowski, M. 2009. Scheduling for Parallel Processing, Springer-Verlag, London.

Drozdowski, M. and Dell’Olmo, P. 2000. Scheduling multiprocessor tasks for mean flow time
criterion, Computers and Operations Research 27(6): 571–585.

Giaro, K., Kubale, M., Maiafiejski, M. and Piwakowski, K. 1999. Chromatic scheduling of
dedicated 2-processor UET tasks to minimize mean flow time, Proceedings of 7th IEEE
International Conference on Emerging Technologies and Factory Automation (ETFA–99),
pp. 343–347.

Holyer, I. 1981. The NP-completeness of edge-coloring, SlAM Journal on Computing 10: 718–
720.

Hoogeveen, J., van de Velde, S. and Veltman, B. 1994. Complexity of scheduling multi-
processor tasks with prespecified processor allocations, Discrete Applied Mathematics
55(3): 259–272.

Kononov, A. and Kovalenko, Y. 2020. Makespan minimization for parallel jobs with energy
constraint, Mathematical Optimization Theory and Operations Research, MOTOR-2020,
LNCS, Vol. 12095, Springer, Cham.

Kubale, M. 1996. Preemptive versus nonpreemtive scheduling of biprocessor tasks on dedi-
cated processors, European Journal of Operational Research 94(2): 242–251.

Kuhn, H. and Tucker, A. 1951. Nonlinear programming, The Second Berkeley Symposium
on Mathematical Statistics and Probability, University of California Press, Berkeley, CA,
pp. 481–492.

Lee, C.-Y. and Cai, X. 1999. Scheduling one and two-processor tasks on two parallel proces-
sors, IEE Transactions 31(5): 445–455.

Pruhs, K., Uthaisombut, P. and Woeginger, G. 2008a. Getting the best response for your erg,
ACM Trans. Algorithms 4(3): 17 p.

Pruhs, K., Uthaisombut, P. and Woeginger, G. 2008b. Getting the best response for your erg,
ACM Trans. Algorithms. 4(3): 1–17.

Schwiegelshohn, U., Ludwig, W., Wolf, J., Turek, J. and Yu, P. 1998. Smart SMART bounds for
weighted response time scheduling, SIAM Journal on Computing 28: 237–253.

Shabtay, D. and Kaspi, M. 2006. Parallel machine scheduling with a convex resource con-
sumption function, Eur. J. Oper. Res. 173: 92–107.

Turek, J., Ludwig, W., Wolf, J., Fleischer, L., Tiwari, P., Glasgow, J., Schwiegelshohn, U. and Yu,
P. 1994. Scheduling parallelizable tasks to minimize average response time, Proceedings
of the sixth annual ACM symposium on Parallel algorithms and architectures, pp. 200–
209.

